skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Banerjee, Arindam and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Banerjee, Arindam and (Ed.)
  2. Banerjee, Arindam and (Ed.)
    While reinforcement learning has witnessed tremendous success recently in a wide range of domains, robustness–or the lack thereof–remains an important issue that remains inadequately addressed. In this paper, we provide a distributionally robust formulation of offline learning policy in tabular RL that aims to learn a policy from historical data (collected by some other behavior policy) that is robust to the future environment arising as a perturbation of the training environment. We first develop a novel policy evaluation scheme that accurately estimates the robust value (i.e. how robust it is in a perturbed environment) of any given policy and establish its finite-sample estimation error. Building on this, we then develop a novel and minimax-optimal distributionally robust learning algorithm that achieves $$O_P\left(1/\sqrt{n}\right)$$ regret, meaning that with high probability, the policy learned from using $$n$$ training data points will be $$O\left(1/\sqrt{n}\right)$$ close to the optimal distributionally robust policy. Finally, our simulation results demonstrate the superiority of our distributionally robust approach compared to non-robust RL algorithms. 
    more » « less